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Previous theoretical approaches to understanding effects of electric
fields on cells have used partial differential equations such as
Laplace’s equation and cell models with simple shapes. Here we
describe a transport lattice method illustrated by a didactic multicel-
lular system model with irregular shapes. Each elementary membrane
region includes local models for passive membrane resistance and
capacitance, nonlinear active sources of the resting potential, and a
hysteretic model of electroporation. Field amplification through cur-
rent or voltage concentration changes with frequency, exhibiting
significant spatial heterogeneity until the microwave range is
reached, where cellular structure becomes almost ‘‘electrically invis-
ible.’’ In the time domain, membrane electroporation exhibits signif-
icant heterogeneity but occurs mostly at invaginations and cell layers
with tight junctions. Such results involve emergent behavior and
emphasize the importance of using multicellular models for under-
standing tissue-level electric field effects in higher organisms.

E lectric field effects in biological systems are of long-standing
scientific interest. Endogenous fields are important in de-

velopment (1) and wound healing (2). Small external fields from
dc to ��1 GHz are of interest with respect to sensory systems,
medical applications, and possible human health hazards (3–12).
Larger pulsed fields are involved in stimulation of excitable cells
(13, 14) and electroporation and heating of tissue in vivo (15–19)
and cells in vitro (20–23) or ex vivo (24).

Biological cells contain highly conductive aqueous electrolytes
separated by thin, low-conductivity membranes populated with
electrically active macromolecules. As a result, multicellular
systems are extremely heterogeneous with respect to their
passive electrical properties (local resistance and capacitance)
and both passive and active interaction mechanisms (ion pumps,
voltage-gated channels, and electroporatable membrane re-
gions). This heterogeneity creates a basic complication: an
applied field, E� app, leads to a response field, E� res, that differs
spatially and temporally from E� app within the biological system.
Here E� app is the field that would exist if the biological system
were replaced by a purely conductive medium.

Many of these interactions have biological relevance. Fields guide
ionic currents (1, 2) and cause Joule heating. At cell membranes
fields drive conformational changes in macromolecules, particularly
ion channels (7, 13, 14) and membrane-associated enzymes (6, 25),
and cause electroporation (15–19, 26, 27) and the related events of
electro-insertion (24) and electrofusion (22, 26, 27). Several of these
interactions can take place simultaneously, although often one
interaction dominates. Importantly, these interactions depend on
the local electric field, not the average applied field usually reported
in experimental studies or predicted by tissue-level simulations.
Accordingly, it is important to create and solve increasingly realistic
system models that reasonably represent real cells and multiple cells
in close proximity.

To analyze a cellular response quantities such as elec-
tric potential (�), electric field (E� � ���), transmembrane
voltage (Um), current density (J� � E� ��; � � resistivity), and
specific absorption rate (SAR; power dissipation per mass) (28)
are sought throughout a system of one or more cells. Previous
isolated cell models emphasized highly idealized and passive
membranes. A recent single-cell model (29) has comprehensive

conductive and dielectric properties, but represents the special
case of an isolated spherical membrane without nonlinear mem-
brane interactions. Solid tissue models avoid cellular complexity
altogether by using average properties of �106 cells on a
millimeter scale (8).

Considerable attention has been given to transmembrane
voltage-dependent mechanisms. The field-induced change in
transmembrane voltage, �Um, generally varies with position over
a cell membrane, with �Um difficult to predict except for isolated
cells with simple shapes that are exposed to uniform E� app. In
some analyses (29) the related internal membrane field is
emphasized. In this case the position-dependent membrane field
amplification gain is Gm( f ) � �Um( f )�[dmEapp( f )], where dm �5
nm is the membrane thickness. Field gain results from voltage
concentration at the highly resistive membrane.

Traditional analytical approaches to determining cellular electric
fields are based on spatially dependent, partial differential equa-
tions (3, 6–10, 29, 30). Modeling difficulty arises from inclusion of
resistive and dielectric properties in all regions, nonlinear ion
channel conduction, irregular cell shapes, nearby cells, and (for
strong fields) highly nonlinear and hysteretic changes in cell mem-
brane resistance caused by electroporation. Here we show that
transport lattices and Kirchhoff’s laws (28) can solve these prob-
lems. We validate the transport lattice approach by comparing its
predictions with analytical results for a spherical cell model for
frequencies from 100 Hz to 10 GHz (29). We then solve a didactic
model of a complex multicellular system with 50 irregularly shaped
cells for weak and strong electric field responses.

Methods
Transport Lattice Construction. We represent a system of electro-
lytes, membranes, and electrodes by a transport lattice (node
spacing �; here of order 1 �m) with elementary regions (volume
�3) assigned local charge transport or charge storage models
(Fig. 1). This includes a nonlinear representation of the local ion
channel population (Fig. 2). Sites of cell membranes and elec-
trodes can be prescribed by mathematical equations (Fig. 3),
digitized drawings (Fig. 4), or images that are mapped onto the
lattice to define elementary regions for assignment of local
transport models (Fig. 1). The applied field is introduced by
defining the locations of idealized electrodes (zero overvoltage),
and then assigning a common potential to the nodes associated
with each electrode. A thermal version of some aspects of this
approach has been used to assess calorimeter design (31).

Electrolyte Model with Conductive and Dielectric Interactions. Bulk
liquid electrolyte is represented in two dimensions (2D) by four
identical local charge transport models, Me, connected to a
central node (Fig. 1); in 3D there are six models connected to
each node. Each local model consists of a local electrolyte
resistance, Re, in parallel with a local electrolyte capacitance, Ce.
For example, if � � 1 �m, an elementary volume of external
electrolyte has Re � �e�� � 8.3 � 105 � (resistivity �e � 0.833
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� m) and Ce � �e�0� � 6.4 � 10�16 F (dielectric constant �e �
72.3), consistent with a charge relaxation time, �e � �e�e�0 �
5.3 � 10�10 s (independent of �).

Membrane-Electrolyte Interface Region Model. The model for a
membrane interfacing with two electrolytes, Me1	m	e2, has
submodels (Fig. 1) for charge transport in: (i) electrolyte 1
contacting one side of the membrane, (ii) the membrane, and
(iii) electrolyte 2 contacting the other side of the membrane (Fig.
1). For � �� dm (membrane thickness; 5 nm), the electrolytes are
approximated by parallel combinations Re1�2 and 2Ce1, and
Re2�2 and 2Ce2.

Spherical Cell Model with Passive Interactions. A discretized ap-
proximation to a spherical membrane is centered within a 29 �
29 � 29 node cube (� � 1.14 �m). The spherical cell (Fig. 3) is
first assigned the large membrane resistivity of a typical artificial
planar bilayer membrane, �m � �lip � 108 � m, to approximate
the classic, insulating spherical cell membrane (8). Bulk elec-
trolyte dielectric properties are included (Fig. 3 a–h). The local
membrane resistance value is Rlip � �lipdm��2 � 3.9 � 1011 �.
The local capacitance is Cm � �2�m�0�dm � 1.2 � 10�14 F, using
a membrane dielectric constant �m � 5. The extra- and intra-

cellular resistivities are �e,ex � 0.83 � m and �e,in � 4 �e,ex. The
cubic simulation region has �69,000 intranodal transport models
and simulation region size (cube edge) Lsim � 32 �m. The
equation for a sphere is used to assign local transport models.
The average radial distance of the resulting, discretized approx-
imation to a sphere (Fig. 3b) is chosen to be 10 �m. The
simulation region’s top and bottom boundaries are regarded as
ideal planar electrodes, providing a uniform E� app.

For comparison with the second-order model spherical cell
(Fig. 3i) (29), �m is decreased from �lip to 3.3 � 106 � m, but
�m � 5 is retained. In this case Rm � 1.3 � 1010 � and Cm is
unchanged.

Multicellular Model with Active and Passive Interactions. The 2D
multicellular system model (Fig. 4a) was created by mapping a
drawing onto a lattice, using �126,000 local transport models, �
� 0.4 �m, and a simulation region of 105 �m � 97 �m. Cells have
dimensions of �20 �m � �5 �m. The outer membrane of each
cell is assigned the active and passive local models of Fig. 1. As
described below, each local area (�2) is assigned a fixed resis-
tance, Rlip, in parallel with the nonlinear current source. The
membrane dielectric constant is �m � 5, as in the second-order
spherical model (29) (Fig. 3). The corresponding fixed mem-

Fig. 1. (a) Small portion of a transport lattice (here 2D; 7 � 7 nodes; 6� � 6� area; 84 local transport models; � � node spacing, here uniform) with two electrolytes
separated by a membrane (dark curve). (b and c) Bulk electrolyte charge transport models, Me1 (b) and Me2 (c). (d) Membrane�two electrolyte interface transport
model, Me1	m	e2 (black). The cell membrane transport model, Mm, is contained between the two large, curly brackets.

Fig. 2. Nonlinear charge transport model for active and passive channel processes. The model (Fig. 1) was constructed from whole-cell voltage clamp data (32).
(Left) The membrane current data [I(Um); E] was fit to the functional form of Eq. 1 to obtain the model data (solid line). (Right) The corresponding dynamic
membrane conductance, gm, as a function of transmembrane voltage, Um, is shown.
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Fig. 3. Spherical cell model (rcell � 10 �m) for nearly insulating and realistic membrane resistivities. (a) Perspective drawing with ideal parallel plane electrodes (top
black and bottom gray) that provide an applied electric field, E�app. (b) Approximation of spherical cell (black region assigned Me1	m	e2; white and gray regions assigned
Me1 and Me2, respectively). (c–h) Equipotentials (blue) for �m � 108 � m and f � 100 Hz, 100 kHz, 1 MHz, 10 MHz, 100 MHz, and 1 GHz, respectively. (i) Magnitude of
the frequency-dependent membrane field gain at the cell’s poles, Gm,pole(f), predicted here (red) and by a second-order analytic model (black) (29).

Fig. 4. Didactic multicellular system model. (a) Electrolyte-filled cavity and endothelial layer with cells connected by tight junctions, with an invagination and
a gap in the cell layer. The upper region is saline (extracellular electrolyte). The underlying region contains subendothelial cells with �15% extracellular fluid.
(b) Gm( f) from 10 Hz to 10 GHz at cell membrane sites A–F. (c–h) Equipotentials for 100 Hz, 100 kHz, 1 MHz, 10 MHz, 100 MHz, and 1 GHz, respectively. (i–n) SAR
distributions (spatially averaged value of 1 W�kg�1; color bar: black � 0 to white �2 W�kg�1) for the same frequencies. SAR is proportional to �J2 and is displayed
instead of J� because SAR is more closely related to local heating and possible thermal effects.
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brane resistance and capacitance values are Rlip � �lipdm��2 �
3.1 � 1012 � and Cm � �m�0�2�dm � 1.4 � 10�15 F.

Four charge transport models are assigned to Mm (Fig. 1):
(i) Ich(Um), which accounts for the combined contributions of all
channels and the intra�extracellular ion gradients that generate the
resting potential and a membrane resistance with a sigmoidal
transmembrane voltage dependence; (ii) electroporation, repre-
sented by a simple model, an abrupt, irreversible transition (volt-
age-sensitive switch, SW) to a high conductance state, Rm[ep] � 103

�edm��2 � 2.6 � 107 �, consistent with maximum permeabilization
of 0.1% fractional aqueous area when Um locally reaches a thresh-
old value of 500 mV; (iii) a fixed high resistance, Rlip, of the
membrane lipids; and (iv) a fixed membrane capacitance, Cm.

Each cell is elongated, with an irregular, asymmetric shape and
contains a model for the nucleus. Nuclear membranes are assigned
a fixed resistance, Rlip, and capacitance, Cm, as in previous models
in which the nucleus is represented by a smaller concentric mem-
brane within a spherical cell (8). The simulation region’s top and
bottom boundaries are ideal planar electrodes, providing a uniform
E� app. Based on quasi-electrostatic and penetration depth criteria
(8), this model is valid from dc to f � 10 GHz.

Membrane Channel Population Model from Whole-Cell Data. The
nonlinear charge transport model for active and passive pro-
cesses is derived from whole-cell data (32), in which membrane
current data [I(Um); E in Fig. 2] were fit to the nonlinear function

Ich
Um� � Um�gm
	 	 gm




2 �
	 w�gm

	�gm



2 � log cosh �Um�Um,0

w � 	 Ic, [1]

where Um,0 is the cell’s resting potential (the offset from Um � 0),
Ic is a constant, w is the width of the sigmoid transition (Eq. 2) of
gm(Um), and gm

� and gm
	 are the minimum and maximum membrane

conductances at very small and large Um, respectively (g is the
reciprocal of resistance). The resulting nonlinear Um-dependent
dynamic membrane conductance (Fig. 2 Right) has the form

gm
Um� � �gm
	 	 gm




2 � 	 �gm
	�gm




2 � tanh�Um�Um,0

w � .

[2]

The parameters had a fit value of w � 22 mV, and Ich � 36 pA. The
fixed membrane resistance is removed from Ich(Um) and shown

separately as Rlip (Fig. 1), to be transparently consistent with
traditional cell membrane models that contain explicit membrane
resistance and capacitance. The data fit yields gm

� � 8 pS and gm
	 �

9 nS (3 orders of magnitude larger with all channels open). For a
cell membrane area �3 � 10�9 m2 the value of gm

� corresponds to
a resistivity 7 � 1010 � m �� �lip. In contrast, gm

	 corresponds to a
membrane resistivity of 7 � 107 � m.

Within an elementary area (�2) the nonlinear dependence of
current on Um involves the entire population of ion channels and
pumps and intra�extracellular ion concentration differences (33).
In the cell models of Figs. 3 and 4 the magnitude of the nonlinear
current source changes with position as Um varies over the mem-
brane because of electric field interactions involving the response
field, E� res. On a scale of �2, inhomogeneous channel distributions
(14) can also be assigned over cell membranes as desired.

Membrane Electroporation Model. A simple electroporation model
is used in a time domain solution of the multicellular model (Fig.
5). A ‘‘square’’ pulse with a slew rate of 1,100 V�cm�1��s�1 and
pulse duration of 10 �s is applied. As Um changes throughout the
model, membrane sites reaching Um �0.5 V make abrupt,
irreversible downward transitions in resistance from �Rlip to
Rm,[ep]. This finding corresponds to locally maximum permeabi-
lization, consistent with 0.1% fractional aqueous area achieved
during electroporation (34, 35).

Transport Lattice Solution. Transport lattices (2D and 3D) are
solved by Kirchhoff’s laws, here using Berkeley SPICE version 3f5
(36, 37), yielding charges, currents, and voltages throughout the
lattice. These quantities are available at any node or for any
transport model element (e.g., Um across Mm) and can be
retrieved and then converted into quantities such as equipoten-
tials (obtained by interpolation of nodal potentials), and SAR
(dissipative power per mass within each elementary volume, �3,
using a mass density �mass � 103 kg�m�3). This step yields
distributions of the traditional quantities �, E� res, Um, J�, and SAR
throughout the system model. Some of these quantities are
displayed in Figs. 3–5, using MATLAB (Mathworks, Natick, MA).
A single processor (1.2 GHz) computer with 1.5 gigabytes
of memory, obtains solutions in 20 min (Figs. 4 and 5) to 8 h
(Fig. 3).

Results and Discussion
A transport lattice is a system model that allows many features
of a cellular system to be included. The geometry of one or more
cells can be irregular, because idealized shapes are not needed
to solve the electrical circuit that corresponds to the lattice.

Fig. 5. Effect of electroporation on equipotential (electric field) uniformity. (a–c) Time domain solutions for electroporation during a field pulse, Eapp � 1,100
V�cm�1 (leading edge rising at 1,100 V�cm1��s�1). Red indicates electroporated membrane regions; elapsed time is shown in upper left corner. (d) All membranes
maximally electroporated [0.1% area occupied by aqueous pores (34, 35)]. (e) Same as d, but supramaximally electroporated (1% aqueous area). ( f–j)
Equipotentials at 100 Hz for the corresponding cases of partial (at t � 1.8, 2.0, and 5.6 �s), maximal, and supramaximal electroporation.
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Moreover, the system model can have many regions of fluid,
each with different properties. Many local interaction models
can be included, with each elementary membrane area (�2)
assigned different models of membrane function. Here we assign
four models (Fig. 1), keeping them identical at all cell membrane
sites, with only the location, size, and shape of the cell varied
(Fig. 4a). Nuclear membranes are included, but are assigned only
fixed resistance and capacitance, consistent with previous mod-
els in which the nucleus is represented as a smaller concentric
membrane within a spherical cell (8).

Kirchhoff’s laws provide a fundamental description of charge
transport along the localized paths that form the basis of electrical
circuits (28). These laws ensure that currents entering and leaving
nodes obey charge conservation and that the voltage drops around
each closed path add up to zero. A system model is therefore a very
large electrical circuit. A transport lattice provides an approximate,
alternative approach to traditional analytical and finite element
methods. This approach is consistent with earlier use of electrical
analog computers to solve partial differential equations by using
relatively small circuits (38). A transport lattice also allows both
field-dependent transport (e.g., ionic conduction in aqueous elec-
trolytes) and transmembrane voltage-dependent transport (e.g.,
voltage-gated channels and electroporation) to be easily incorpo-
rated into a system model. All of the local models interact, through
paths that connect nearest neighbor local models. As computer
power increases, the number of local models can be made larger,
following the basic approach described here.

For comparison to analytical results (Fig. 3) we first treat the
classic spherical cell model (3, 6–8, 29) by confining an approxi-
mately spherical membrane to a small volume. The low-frequency
transmembrane voltage change at the sphere’s poles for a high
resistivity membrane is 0.99 times the analytical result, �Um,pole �
Gm,pole(0)Eappdm � 1.5 Eapprcell. This classic analytical prediction
holds for an unconfined cell and infinitely distant electrodes (3,
6–8). The membrane area-averaged transmembrane voltage
change squared is relevant to accumulated chemical change
caused by periodic fields (7) and is 0.99 times the classic result,
�Um

2 � 0.75 Eapp
2rcell

2. The transport lattice region is somewhat
larger than the cell (Fig. 3a) and therefore confines currents
compared with an electrolyte of infinite extent. Cell confinement is
a realistic condition for most in vivo tissues (15–18) and some in vitro
systems (20–22). The transport lattice also has a finite number (here
1,218) of membrane sites where Um is determined (Fig. 3b). For this
reason our predictions yield slightly different transmembrane volt-
age changes than the analytic result.

The response field changes significantly with frequency. Below
�100 kHz, E� res is nearly excluded from the cell, whereas at �1
MHz the intracellular field is larger than the extracellular field
over most of the cell. For 10–100 MHz the membrane impedance
is negligible, and the larger intracellular resistivity is fully
revealed (field inside larger than outside). However, for 1–10
GHz, E� res is almost uniform throughout, making the cell almost
‘‘electrically invisible’’ (Fig. 3 c–h).

We also made predictions for a spherical cell model with the
smaller membrane resistivity and dielectric properties of the
intra- and extracellular electrolytes used recently by others (29)
(Fig. 3). In this case, the field gain at the cell’s poles, Gm,pole( f ),
agrees well with the second-order analytic model (29). Both
models predict a large, frequency-independent gain from dc to
�100 kHz, which is caused by conduction-dominated voltage
division within the model (Fig. 3i). Both models also predict a
nonzero field gain plateau for frequencies ��300 MHz. This
microwave frequency result is caused by dielectric-dominated
voltage division. The slightly different predictions (Fig. 3i) arise
mainly because the transport lattice region is finite, whereas the
analytic model has infinite extent.

The multicellular system model results show that two basic
types of field-amplifying mechanisms can exhibit frequency-

dependent emergent behavior. Multiple cells can concentrate
the current density, J�, and can therefore amplify E� app to generate
E� res � � J�, increasing local SAR and thermal effects. Nonthermal
interactions based on electroconformational mechanisms at the
cell membrane (voltage-gated channels, field-sensitive enzymes,
electroporation) involve position-dependent membrane field
amplification gain, Gm( f ), which can be regarded as voltage
concentration.

Frequency-Dependent Amplification of E�app by Current Density Con-
centration. Consider the current density within the invagination
of Fig. 4. As f increases from 100 Hz or less, the current density
becomes increasingly concentrated within the invagination’s
electrolyte. In this sense E� app is amplified, with E� res increasing
from almost zero at 100 Hz to appreciable values at higher
frequencies (Fig. 4 c–h). Regions with concentrated J� are
apparent from examination of the blue equipotential lines.
Closer line spacing corresponds to a larger E� res and (for the same
resistivity) larger J�. As frequency increases displacement cur-
rents increasingly flow across the membranes of cells lining the
invagination and also across membranes of nearby cells. Thus,
for time varying fields with high frequency components, invagi-
nations can concentrate J� and thereby amplify an applied field.

Below �300 MHz current density concentration also occurs
within the cell layer gap (above site C), but involves pure conduction
current that changes with frequency because of interactions
throughout the system model. This causes elevated SAR (localized
heating source; Fig. 4 i–m). Additional frequency-dependent dis-
tributions of fields are seen to emerge within and near the suben-
dothelial cells that comprise the bulk of the model.

Above �300 MHz concentration of J� by the multicellular
system diminishes (Fig. 4n), the electric field becomes almost
uniform (Fig. 4h), and emergent behavior is essentially lost. The
response field approaches that of isolated cells (Fig. 3h), with the
nearly uniform E� res � E� app generating an extra- to intracellular
SAR ratio close to �e,in��e,ex (here a factor of 4). In this frequency
range power dissipation is governed mainly by the electrolyte
conductivity, with the largest heating in regions with the smallest
conductivity (here extracellular fluid; Fig. 4n). These current
density concentration responses are not quantitatively foreseen
by isolated single-cell models.

Frequency-Dependent Amplification of E�app by Voltage Concentration.
Voltage concentration occurs mainly across cell membranes. The
membrane field gain, Gm( f), has four frequency regions, shown
here for six illustrative membrane sites (Fig. 4b). Region I is defined
by low-frequency plateaus in Gm( f). Conductive voltage division
throughout the model results in a wide range of Gm( f) plateaus,
with membrane sites at the invagination and parts of the tight cell
layer achieving the largest values. These are examples of preferred
sites for transmembrane voltage-based interactions.

Region II exhibits complicated emergent behavior, through a
cell interacting with other groups of cells. For deeper cells (sites
D, E, and F) maximum shielding of some cells from electric fields
occurs in region I, with frequency-dependent partial loss of
shielding arising in region II. Within regions II and III some
membrane sites experience broad peaks in Gm( f ) (sites D, E, and
F). Frequency ranges with enhanced responses have been
termed ‘‘windows,’’ but often lack a theoretical basis (8). Cells
within the cell layer with tight junctions (sites A and B) or near
the cell layer gap (site C) experience decreasing Gm( f ) in region
II. In region III cells have monotonic decreases in Gm( f ), also
a feature of the isolated spherical cell. As microwave frequencies
are reached in region IV there are smooth transitions of Gm( f )
into small plateaus governed by dielectric voltage division, with
Gm( f ) dropping from maximum values of �104 in region I to
�10 or less in region IV. The complicated behavior of voltage
concentration at cell membrane sites is caused by distributed
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interactions involving the entire multicellular system. For a given
site, nearby cells and more distant layers of cells with tight
junctions are particularly important.

Very large Gm( f ) that is achieved by very large and specialized
multicellular structures is fundamental to detection of weak dc
and extremely low-frequency fields. The ampullae of Lorenzini
in elasmobranch fish concentrate a whole body voltage to two
layers of specialized cells (4, 9). The relatively small nonspecial-
ized multicellular invagination of Fig. 4 leads to much smaller but
nevertheless significant membrane amplification at low frequen-
cies for some cells, but this is essentially lost at microwave
frequencies.

Electroporation and Electric Field Inhomogeneities. Time domain
electrical responses also exhibit emergent behavior. We con-
sider electroporation, which is a nonthermal effect that non-
linearly depends on Um and involves voltage concentration (8,
35). Electroporation is shown here to be favored at sites near
an invagination and a cell layer gap (Fig. 5). The spatial
distribution of electroporation is predicted during a pulse of
magnitude E� app � 1,100 V�cm�1, typical for small molecule
delivery in vivo (18). For this pulse the electroporation distri-
bution stops growing within �5 �s. Unlike the smooth elec-
troporated polar region of a large, isolated spherical cell (34)
electroporation in the multicellular model is highly nonuni-
form. A complex pattern of electropermeabilized cell mem-
brane regions develops, preferentially in and near the cell
layer, and near the gap in the layer. Such heterogeneity is
relevant to in vivo electroporation (16, 18, 39).

The greatly decreased resistance of electroporated mem-
branes does not create a homogeneous E� res (compare the 100-Hz
equipotentials of Figs. 4c and 5 a–c). Even if all cell membranes
were extensively electroporated emergent behavior persists (Fig.
5 d and e). This result supports the view that achieving a
homogeneous electrical response below microwave frequencies
is extremely difficult in multicellular systems.

Microwaves are indeed extremely effective in generating a
nearly homogeneous response in a multicellular system with
nonelectroporated cells (Fig. 4h), almost eliminating signifi-
cant field amplification. This conclusion is relevant to reported

nonthermal effects in a multicellular organism at microwave
frequencies (12) and the use of magnetic resonance imaging
with very strong magnetic fields that involve Larmour fre-
quencies �300 MHz. Subcellular structures, particularly mag-
netosomes (40), create small inhomogeneities on a length
scale of their size (�0.1 �m), which is much smaller than
typical mammalian cells and therefore insignificant on a
multicellular scale.

Together our results illustrate the importance of considering
multicellular models for the response of biological systems to
electric fields. Predicting electrical quantities is a necessary
first step for estimating field-induced chemical changes (7, 9,
27, 41, 42) that will be needed to achieve a comprehensive
understanding of interactions of electric fields with cellular
systems. Transport lattice models of cellular systems for heat
transport and molecular and ionic transport are also possible
and can be used in combination with an electrical transport
lattice model to approach more general cell modeling prob-
lems. As illustrated here, one goal of cellular system models
can be creation of models for small (Fig. 4) to large (Fig. 5)
electric fields by using a single system model. The multicellular
model shows that some cells may experience thermal effects
through localized heating associated with current density
concentration. Other cells may have nonthermal effects
through voltage concentration that favors transmembrane
voltage-dependent interactions (channel gating, electrocon-
formational coupling, electroporation). Both types of re-
sponses can involve the interaction of many cells. Cell models
based on transport lattices are a restricted subset of complex
networks (36, 43), with only nearest neighbor connections.
Their essential feature is prediction based on the interaction
of many local transport models within a system model.
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