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Undulation instability of lipid membranes under an electric field
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Abstract

The influence of an electric field on a poorly conductive membrane such as a

lipid bilayer is studied theoretically. The unbalanced electric stress created by

an ionic current across a non-perfectly flat membrane gives rise to a destabi-

lizing surface energy enhancing undulations. The deformation of a membrane

attached to a frame and the subsequent force on the frame are derived and

the electrohydrodynamic instability of a free floating membrane is also stud-

ied. We find a most unstable mode of undulation, of wavelength in the µm

range, connected to the crossover between membrane and solvent dominated

dissipations.
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Due to their low permeability to electrolytes, biological or other lipid membranes are
strongly influenced by applied electric fields. Researchers are actively investigating phe-
nomena such as electroporation (creation of long-lived pores in a lipid membrane under the
action of a strong electric field) [1,2], in part because of very promising applications for gene
therapy. Similarly, the electroformation of lipid vesicles is a widely used technique to form
large unilamellar vesicles under the action of an electric field [3]. Despite its importance,
there is no clear understanding of this experimental tool, which remains mostly empirical.
Many other situations (electrofusion [4], electro-injection of macromolecules in vesicles and
cells [5]) require a better understanding of the action of electric fields on lipid bilayers. This
paper addresses this issue theoretically, and discusses the effect of an electric field on i) the
force exerted on a rigid frame by an attached membrane, and ii) the dynamical instability
of a free floating membrane and its relevance for the electroformation of neutral liposomes.
Before reaching these two topics, we study the stability of an almost flat membrane under
electric field.

The force acting on an interface in an electric field E can be calculated by evaluating the
discontinuity of the Maxwell stress tensor σij = ε(EiEj − 1

2
E2δij) across the interface [6].

We consider an infinite membrane of dielectric constant εm(' 2ε0) and conductivity χ−1
m ('

10−6S/m) in a solvent of dielectric constant ε1(' 80ε0) and conductivity χ−1
1 (' 10−1S/m)

(numbers are typical for a lipid membrane in water, ε0 is the permitivity of vacuum). A
fixed electric field E (in practice, a fixed electric current j) is applied across the membrane,
and we note Em the electric field inside the membrane.

If the membrane is perfectly flat, the electric stress is symmetrically balanced on both
sides of the membrane (i.e., σel ' εmE

2
m−εmE2

m = 0), which experiences a mere compression
[7]. As already pointed out in [2], this perfect cancellation of the net electric stress is
however accidental since any membrane curvature leads to an unbalanced net stress whose
order of magnitude can be expressed as σel ' εmE

2
md/R, where d is the thickness of the

membrane and R its local radius of curvature (a curvature of the membrane leads to a
non-uniform surface charge density - see Fig.1). In the case of a closed vesicle [2], Em is
given by the potential drop at the vesicle scale (i.e., Em ∼ ER/d) as most of the electric
field goes around the finite sized object, whereas the current continuity across the (infinite)
membrane dictates the expression of Em here, namely Em ∼ Eχm/χ1. This resulting stress
σel tends to enhance the (small) local undulations of the membrane u(r) =

∑
q uqe

iqr (Monge
representation in real and Fourier space). After a short transient time τe ' (εm/d)χ1H '
10−6−10−5s (H is the distance between the electrodes), the solution of the Poisson equation
(in the limit εmχ

2
m � ε1χ

2
1) yields the following expression for a given Fourier mode: σel =

2εm(Eχm/χ1)2(eqd − 1)/(eqd + 1)u(r). Hence, integrating the work of the electric stress (in
the large wavelength limit qd� 1) yields a net decrease in energy

Fel = −Γel
2

∫
dS(∇u)2 Γel = εm

(
χm
χ1

)2

E2d (0.1)

This amounts to an effective negative surface tension Γel acting on the membrane. In the
presence of a lipid reservoir (or at the interface between two immiscible fluids of different
conductivities), this term leads to an electric field induced decrease of the interfacial tension,
known as the electrocapillary effect [8]. On the contrary, for a fixed number of surfactants,
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enhancing membrane undulations under electric field builds a concomitant mechanical ten-
sion because of deviation from the nominal area per molecule. Hence we expect a tense
yet floppy-looking membrane in this case. For typical values of the electric field used in
the electroporation and electroformation experiments E ∼ 103V/m, the electrostatic surface
tension reaches Γel = 10−3J/m2, which is of order the mechanical tension needed to rupture
a lipid membrane [1].

Two consequences of this destabilizing effect are studied below: i) a membrane on a fixed
frame is deformed until the electric stress is balanced by an opposing mechanical stress and
ii) a free membrane undergoes strong undulations under electric field.

� Case of a bilayer attached to a fixed frame

The elastic behavior of a lipid membrane is generally characterized by a bending modulus
κ (∼ 5× 10−20J), and a stretching modulus Ks (∼ 0.1 J/m2) [9]. Typically, bending a lipid
membrane involves energies of order 1 − 10kBT , while stretching it requires much larger
energies. To simplify the description below, we will not include the bending rigidity in
the treatment of the static deformation of the membrane, nor will we include the thermal
fluctuations of the membrane, restricting ourselves to large electric fields.

We write a linear theory for small deformations of the membrane quq � 1. The mem-
brane is characterized by its total area S, its projected area Sp, and its optimum area for
which it is not stretched S0. We use the two small parameters δ ≡ (Sp − S0)/S0 and
I ≡ (S − Sp)/S0 ' (1 + δ)1

2

∑
q2|uq|2 ' 1

2

∑
q2|uq|2. The electric-field-induced undulation

term involves the parameter I only (Eq.(0.1)), and the stretching energy involves the total
increase of area with respect to S0:

F = S0

(
1

2
Ks(δ + I)2 − ΓelI

)
(0.2)

Note that the electric-field-induced undulation term (Γel) is quadratic in the small quantity
quq, while the stretching term (Ks) corresponds to an expansion to the fourth order, con-
sistent with the large value of the ratio of the stretching over the electrostatic parameters
β ≡ Ks/Γel > 100.

The minimization of this energy with respect to the out-of-plane membrane deformation
I leads to an equilibrium class of membrane shapes corresponding to a total area difference
∆S

∆S = δ + Ieq =
Γel
Ks

∼ 10−2 (0.3)

The energy of the membrane only is Fm = 1
2
S0

Γ2
el

Ks
, and the energy of the system, including

the electrostatic energy, is F = Fm + Fel = −1
2
S0

Γ2
el

Ks
+ S0Γelδ.

The surface tension of the lipid membrane at equilibrium is given by γ = ∂Fm/∂S with
S = S0(1 + δ + I)

At equilibrium, the mechanical tension is equal, but opposite in sign, to the electrostatic
energy per unit area: γ = Γel. The building of a mechanical tension in a membrane under
electric field is due to an increase of its area.
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Beyond the electroporation threshold, holes in the membrane reduce the mechanical
tension by decreasing the membrane area and strongly increasing the membrane electrical
conductivity 1/χm. The effect of the electric field could be measured via the setup depicted
in Fig.2. The force measured by the spring is f = ∂Ftot/∂Lp = ΓelLy (∼ 10−3N/m), where
Lp and Ly are the membrane projected size in the direction of and perpendicular to the
spring respectively. The membrane pulls on the spring (f > 0) if I > −δ. The force in the
absence of field is simply: f0 = KsLyδ.

It is clear from Eq.(0.3) that the balance between electric-field-induced undulation and
membrane stretching does not select a particular equilibrium membrane shape, as both
effects depend on the global increase of membrane area only. Including the bending energy
of the membrane selects the shape of lowest curvature, namely the first harmonic q1 = π/Lp.
The energy gap between the different harmonics is however small (of order kBT ) for qλκ < 1,
where λκ = 2π

√
κ/Γel. For large electric fields (E ∼ 103V/m), λκ is very small (∼ 10nm).

For small electric fields, the thermal fluctuations dominate both the membrane shape and
tension. We postpone the study of the interesting crossover between these two limits to a
future publication.

There are some dynamical issues connected to force measurements on lipid membranes
(Fig.2). Lipid membranes spread on a frame are generally connected to the frame by meniscii
which are large compared to the membrane thickness, and from which lipid molecules may
flow toward the deformed membrane (a phenomenon reminiscent of the Marangoni effect
[10]). In this case, the membrane elastic stress consequent to the action of an electric field is
rapidly released by migration of lipid molecules, and might not be detectable experimentally.
The kind of force measurement depicted on Fig.1 should however be feasible on polymeric
membranes, which have shown sensitivity to electric field as well [11], and for which the
migration of molecules along the membrane, if any, is very slow. An alternative experimental
setup for lipid membranes involves measurements on lipid membrane strongly bound to a
solid substrate, which are expected to exhibit a fairly slow lateral dynamics.

� Instability of free floating membranes under E-field

We now study the case of a free floating membrane under an electric field. This study is
partly motivated by the experimental technique of electroformation of vesicles, which allows
a controlled swelling of an electrode deposit of lipids to form vesicles of fairly well controlled
sizes under electric field [3]. Interestingly, this technique works for charged and nonionic
lipids, although the optimal conditions vary widely with the nature of the lipids.

The dynamics of a free membrane under electric field can be decomposed into two mech-
anisms. i) The normal deformation of the membrane (described in the previous section),
which creates a tension γ in the membrane and saturates when γ = Γel. ii) The lateral slid-
ing (contraction) of the membrane, in an attempt to release this tension. The characteristic
time for the normal deformation for a given undulation mode of wavelength λ is τ⊥ ∼ ηλ/Γel
(∼ 10−6s for λ = 1µm), while the sliding motion involves the whole membrane τ‖ ∼ ηL/Γel
(∼ 10−3s for L ∼ 1mm). The two mechanisms occur at very different timescales, and can
be treated separately.

A thorough treatment of the undulation modes of a film immersed in a solvent can be
found in the literature [12]. The electrohydrodynamic instability of a layer of non-conducting
fluid between two semi-infinite conducting fluids has been studied in [13], where special
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attention is given to the peristaltic deformation modes (the two interfaces undulating in
antiphase), as these modes lead to the destruction of the film when the two interfaces make
contact. In the case of a lipid membrane, these peristaltic modes are suppressed because of
the very low compressibility of the film. We study below the bending instability (interfaces
undulating in phase) of the membrane.

i) The normal displacement of the membrane involves viscous dissipation in and around
the membrane [14,15]. There are three main dissipation mechanisms, namely the dissipation
in the solvent (viscosity η = 10−3Pa.s), which dominates the dynamics of large wavelengths
deformation, the friction between the two monolayers (friction coefficient bfr = 108Pa.s/m),
dominant at intermediate wavelengths, and the membrane surface dissipation (surface vis-
cosity µ = 10−10Pa.s.m). For undulating membranes, the latter mechanism is relevant
at very small wavelength of the order of the bilayer thickness d = 5nm only, and will be
neglected in what follows. We present below a simplified description of the interplay be-
tween external and internal dynamics. For a thorough treatment of membrane dynamics,
see Seifert [14].

Neglecting inertia, a normal deformation of the membrane (of typical lateral size 2π/q
and typical velocity u̇q) creates a motion in the surrounding fluid which propagates to a
distance ∼ 1/q. The curvature of the membrane leads to a velocity difference of order
δv = qdu̇q between the two monolayers. The power dissipated by viscous effect around and
in the membrane can be written respectively:

Pη = η

∫
dV (∇v)

2
= Sη

∑

q

qu̇2
q

Pfr = bfr

∫
dS (δv)2 = Sbfr

∑

q

d2q2u̇2
q (0.4)

This dissipated power must compensate the power stored in the membrane Pm = ∂tF (the
energy F is given by Eq.(0.2)). This condition leads to an evolution equation for each
deformation mode:

(ηq + bfrd
2q2)u̇q(t) =[

Γelq
2 (1 − β(δ(t) + I(t)))− κq4

]
uq(t) (0.5)

with β ≡ KS/Γel > 100. The left hand side of this equation describes the viscous dissipation
in and around the membrane and the right hand side consists of the electric-field-induced
undulation term (Γel) with a stretching saturation (β term). Note that the bending rigidity
of the membrane has been added to the membrane energy (κ term), for it is mandatory for
the description of the small wavelength deformations q >

√
Γel/κ. This equation is non-

linear, since the saturation involves the total increase of area I = 1
2

∑
q q

2|uq|2. Thanks to
the different time scales for normal and lateral motions, the projected area of the membrane
Sp(t) ∝ δ(t) can be considered as constant for the short time evolution.

This non-linear equation can be solved, but for our purpose, it is sufficient to consider its
linearized form, and to treat the saturation dynamics separately. The short time evolution
is described by the linear equation

(ηq + bfrd
2q2)u̇q = (Γelq

2 − κq4)uq (0.6)
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The amplitude of a given Fourier mode has a time evolution uq(t) ∼ eαqt with

αq =
Γel
η
q

(
1− (q/qstat)2

1 + q/qdyn

)
(0.7)

with the two characteristic wavevectors:

qstat =

√
Γel
κ
∼ 5.107m−1 qdyn =

η

bd2
∼ 5.105m−1 (0.8)

The evolution rate presents a sharp maximum at

q∗ =
(
qdynq

2
stat

)1/3
= 8.106 m−1 (0.9)

for qstat � qdyn. This defines a particular lengthscale which grows exponentially faster than
the others: λ∗ = 2π/q∗ ∼ 1 µm. The corresponding growth rate is α∗q ∼ Γ

bd2 ∼ 5.105s−1. The
evolution saturates similarly for all lengthscales when β [δ(t) + I(t)] = 1, at which point a
mechanical tension Γel is established, leading to a contraction of the membrane.

ii) The lateral motion of the membrane occurs at an almost constant surface tension, be-
cause the time needed to build up the tension τ⊥ is much smaller than the time τ‖ over which
it could be released. Since the contraction of the membrane involves solvent flow over large
lengthscales (mm), inertial effects must be included [16]. The flow created by the lateral mo-
tion of the membrane (of size L) propagates over a size Lz = L/(

√
1 + L2/(νt)) (ν = η/ρ is

the kinematic viscosity ∼ 10−6m2/s for water - ρ is the density of water). The comparison of
the power dissipated by the sliding motion of velocity L̇: Pdiss = η

∫
dV (∇v)2 = ηL2L̇2/Lz,

with the power stored in the membrane Pstor = ΓelLL̇, leads to the dynamical equation for
the membrane size:

L̇ = −Γel
η

Lz
L

= −Γel
η

1√
1 + L2/(νt)

(0.10)

The short time evolution (t < L2
t=0/ν ∼ 1s) is dominated by the diffusion of the solvent

flow. Assuming that Lt=0 = L0 (No stretching without electric field), the evolution equation
for short time is

L(t) = L0

√
1− 4/3

√
t3/(τ 2

Γτν)

τΓ ≡ ηL0/Γel ' 10−3s τν = L2
0/ν ' 1s (0.11)

from which emerges a characteristic time scale τslide = (τ 2
Γτν)

1/3 ∼ 10−3s. This result is
reminiscent of the dynamics of bursting of a soap film in a viscous environment [17]. The
evolution of the variable δ = Lp/L0 − 1 which appears in Eq.(0.5), is given by δ(t) '
2/3(t/τslide)

3/2.
In many practical situations, fixed boundaries or walls (the electrodes in the case of

the electroformation of vesicles) may strongly modified the hydrodynamics. The solvent
viscous dissipation (Eq.(0.4)) is modified by the presence of a wall at a distance h from the
membrane, and becomes Pη,h = Sη

∑
q u̇

2
q/(q

2h3) for qh < 1. The left hand side of Eq.(0.6)
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is modified accordingly, and shows an optimal wavevector q∗h ∼
√
q∗/h where q∗ is given

by Eq.(0.9). For h = 10nm, the fastest growing wavelength is of order 2π/q∗h ∼ 0.1µm.
The sliding motion is strongly affected by the wall. For times larger than h2/ν, the time
dependent length Lz should be replaced by the distance h in Eq.(0.10), and the dynamics
is described by L(t) = L0

√
1− t/τh with τh = τΓL0/h ∼ 102s instead of τslide = 10−3s (note

that solvent permeation through lipid membrane becomes relevant near a wall)!
To conclude this paper, we would like to propose that the electrohydrodynamic instability

described above may play an important role in the first stage of the electroformation of
liposomes. A remarkable feature of this technique is that it produces vesicles of fairly
well defined size. We find a fastest growing undulation mode of wavelength in the µm
range (Eq.(0.8,0.9)). This mode might be the precurssor of large scale deformations of the
membrane which, after a complex process partly sketched in Ref [3] and involving coalescence
of neighboring blisters, lead to the formation of closed vesicles (the size of which can reach
50 µm for nonionic lipids [18]). Future developments will include the treatment of small
pores which are expected to be present in a membrane under tension, and their influence on
both the membrane electrical conductivity (hence Γel) and dynamics (solvent permeation
through the membrane).

We would like to thank A. Johner, M. Angelova, R. Bruinsma, J.F. Joanny, A. Ajdari
and J.B Fournier for stimulating discussion and useful comments.
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Fig.1 Net accumulation of conduction charges near
a curved lipid membrane under electric field

E

Fig.2. Possible experimental setup for the force measurement
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