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9.4 Fourier transform

• If the period of oscillation is allowed to be-
come infinite, we can calculate the spectral
density of any non-periodic function, e.g. a
wave pulse.

• In this limit, the Fourier coefficients become
continuous functions i.e. all frequencies are al-
lowed.

• The (infinite) array of Fourier coefficients is
referred to as the Fourier transform of the
function.

• Thus we can show that any arbitrary wave
pulse can be produced from a superposition of
harmonic waves, which is why we attach such
importance to understanding their behaviour.

9.5 Some important Fourier transforms

9.5.1 Cosine wave:
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Actually, there is also a spike at −ω0, because the
transform is symmetric.

9.5.2 Top hat:
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9.5.3 Gaussian function:
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This is just another Gaussian function, with
widths related reciprocally, as shown.
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9.6 The bandwidth theorem

(Tipler 16.5)

• The relationship between the widths of the
two Gaussian functions shown above is impor-
tant and has far reaching consequences.

• If the Gaussian function represents a wave
pulse with width, in time, ∆t, the Fourier
transform tells us it contains a spread of fre-
quencies, ∆ω.

• But, the product ∆t∆ω is a constant, i.e.

∆t∆ω = 2π

• This is known as the bandwidth theorem.

• A similar relationship is found if we look at
the spatial width of the pulse:

∆x∆k = 2π

.

• For a more general pulse shape, the determi-
nation of the width of the pulse becomes more
arbitrary, and so the bandwidth theorem be-
comes:

∆t∆ω ≈ 2π and ∆x∆k ≈ 2π

The implications of the bandwidth theorem are as
follows:

• A narrow wave pulse will contain a wide
range of frequencies;

• A broad wave pulse will contain a narrow
range of frequencies;

• ∆ω = 0 implies ∆t = ∞ i.e. an infinite sine
wave, with a single frequency – a perfect wave;

• Similarly, ∆k = 0 implies ∆x = ∞.

10 Wave packets and dispersion

(Tipler 16.5)

• If all the frequency components in a wave
packet or pulse travel at the same phase veloc-
ity, vp, the resulting disturbance will propa-
gate without changing shape, and the medium
is known as non-dispersive.

• The velocity of propagation of the packet, is
known as the group velocity, vg.

• In a non-dispersive medium, vg = vp.

• The group velocity is the velocity at which
energy is carried through the medium.

• If the medium is dispersive, different fre-
quencies travel with different values of vp, and
the wave packet spreads as it travels.
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10.1 Two waves with same amplitude,
different frequency (beats)

Consider two waves with the same amplitude but
differing in frequency. For convenience, assume
that their phase difference is zero at t = 0, and
consider their displacements at an arbitrary x co-
ordinate (e.g. x = 0):

y1 = y0 sin ω1t and y2 = y0 sinω2t

The sum of the two waves is given by:

y = y1 + y2 = y0 sinω1t + y0 sinω2t
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Making use of

sin θ1 + sin θ2 = 2 sin
(

θ1 + θ2

2

)
cos

(
θ1 − θ2

2

)
again gives:

y = 2y0 sin
(

ω1 + ω2

2
t

)
cos

(
ω1 − ω2

2
t

)
i.e.

y = 2y0 cos
(

∆ω

2
t

)
︸ ︷︷ ︸
slowly varying

amplitude

sinωavet︸ ︷︷ ︸
wave with aver-
age frequency

where ∆ω = ω1 − ω2.

The frequency of the resultant wave is the aver-
age of the two input waves, while the amplitude
oscillates with frequency ∆ω/2.

This is known as beating.

The actual frequency of the beats is double this,
as can be seen from the graph below.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20

Wave
Envelope

D
is

p
la

ce
m

en
t

Time / T

i.e. the beat frequency = the difference in fre-
quency between the two sources.

Repeating the analysis above, but with the full
expressions for the two sine waves (i.e. sin(kx−ωt)
yields:

y = 2y0 cos(
∆kx−∆ωt

2
). sin(kavex− ωavet)

The phase velocity of the “average” wave is:

vave =
ωave

kave

whereas that of the envelope is:

venv =
∆ω

∆k

In a non-dispersive medium, it is readily shown
that vave = venv = ω1/k1 = ω2/k2 = the phase
velocity of the medium.

However, in a dispersive medium, vave 6= venv, and
the “envelope” propagates at a different speed to
the individual components. We associate venv with
the group velocity vg, and in this particular case
would write:

vg =
∆ω

∆k

10.2 Dispersion

• In a dispersive medium, vp is different for ev-
ery frequency component, and vg 6= vp

• For any dispersive medium, we can write a
relationship between ω and k, so that ω =
ω(k). This is called the dispersion relation,
and depends on the physics of the particular
wave phenomenon being observed.

• In the general case, the group velocity is given
by the derivative of the dispersion relation, i.e.

vg =
∂ω(k)

∂k

(Proof of this result may be found in ad-
vanced textbooks – not Tipler).

• Usually, vg < vp i.e. normal dispersion.

• However, can find vg > vp i.e. the group, and
hence the energy, travels faster than the in-
dividual waves. This is known as anomalous
dispersion.

• Examples of dispersion:
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– Splitting of light by a prism;

– Formation of a rainbow;

– Phonons propagating through a crys-
talline solid;

– Spreading of light pulses in fibre-optic
cables, due to dispersion, limits the max-
imum length of cable before signal recon-
ditioning is needed.
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