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9.4 Fourier transform 9.5.2 Top hat:

e [f the period of oscillation is allowed to be-
come infinite, we can calculate the spectral
density of any non-periodic function, e.g. a
wave pulse.
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e In this limit, the Fourier coefficients become
continuous functions i.e. all frequencies are al-

lowed.
sin(®t/2)

e The (infinite) array of Fourier coefficients is
referred to as the Fourier transform of the
function.

e Thus we can show that any arbitrary wave
pulse can be produced from a superposition of

harmonic waves, which is why we attach such
importance to understanding their behaviour.

9.5 Some important Fourier transforms

9.5.1 Cosine wave:
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9.5.3 Gaussian function:
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This is

just another Gaussian function, with

widths related reciprocally, as shown.

Actually, there is also a spike at —wy, because the
transform is symmetric.




9.6 The bandwidth theorem

(Tipler 16.5)

The relationship between the widths of the
two Gaussian functions shown above is impor-
tant and has far reaching consequences.

If the Gaussian function represents a wave
pulse with width, in time, At, the Fourier
transform tells us it contains a spread of fre-
quencies, Aw.

But, the product AtAw is a constant, i.e.

AtAw = 27 |

This is known as the bandwidth theorem.

A similar relationship is found if we look at
the spatial width of the pulse:

For a more general pulse shape, the determi-
nation of the width of the pulse becomes more
arbitrary, and so the bandwidth theorem be-
comes:

‘ AtAw ~ 21 and AzAk ~ 2r]

The implications of the bandwidth theorem are as
follows:

A narrow wave pulse will contain a wide
range of frequencies;

A broad wave pulse will contain a narrow
range of frequencies;

Aw = 0 implies At = oo i.e. an infinite sine
wave, with a single frequency — a perfect wave;

Similarly, Ak = 0 implies Az = co.

10

Wave packets and dispersion

(Tipler 16.5)

If all the frequency components in a wave
packet or pulse travel at the same phase veloc-
ity, vp, the resulting disturbance will propa-
gate without changing shape, and the medium
is known as non-dispersive.

The velocity of propagation of the packet, is
known as the group velocity, v,.

In a non-dispersive medium, vy = vp.

The group velocity is the velocity at which
energy is carried through the medium.

If the medium is dispersive, different fre-
quencies travel with different values of v,, and
the wave packet spreads as it travels.
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10.1 Two waves with same amplitude,

different frequency (beats)

Consider two waves with the same amplitude but

differing in frequency. For convenience, assume
that their phase difference is zero at ¢ = 0, and
consider their displacements at an arbitrary z co-
ordinate (e.g. x = 0):

‘yl =ypsinwit and Y2 = yo sinwgt‘

The sum of the two waves is given by:

‘y =y +Yy2= yosinw1t+yosinw2t‘




Making use of
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again gives:
Yy = 2ypsin (wl_gmt) cos (wl;wt>

2 Aw, N Wavet
= cos | — sin w,
Yy Yo 2 ave
~———~——"wave with aver-
slowly varying  age frequency
amplitude

i.e.

where Aw = w1 — ws.

The frequency of the resultant wave is the aver-
age of the two input waves, while the amplitude
oscillates with frequency Aw/2.

This is known as beating.

The actual frequency of the beats is double this,
as can be seen from the graph below.
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i.e. the beat frequency = the difference in fre-
quency between the two sources.

Repeating the analysis above, but with the full
expressions for the two sine waves (i.e. sin(kx—wt)
yields:

Akx — Awt

y = 2yp cos( ). sin(kqpe® — Waypet)

The phase velocity of the “average” wave is:

whereas that of the envelope is:

Aw
Ak

Venv =

In a non-dispersive medium, it is readily shown
that vgpe = Veny = wi/k1 = wa/ky = the phase
velocity of the medium.

However, in a dispersive medium, vgype # Veny, and
the “envelope” propagates at a different speed to
the individual components. We associate vey,, with
the group velocity vy, and in this particular case
would write:

_Aw

YT Ak

10.2 Dispersion

e In a dispersive medium, v, is different for ev-
ery frequency component, and vy # v,

e For any dispersive medium, we can write a
relationship between w and k, so that w =
w(k). This is called the dispersion relation,
and depends on the physics of the particular
wave phenomenon being observed.

e In the general case, the group velocity is given
by the derivative of the dispersion relation, i.e.

(Proof of this result may be found in ad-
vanced textbooks — not Tipler).

e Usually, vy < v, i.e. normal dispersion.

e However, can find vy > v, i.e. the group, and
hence the energy, travels faster than the in-
dividual waves. This is known as anomalous
dispersion.

e Examples of dispersion:



Splitting of light by a prism;

Formation of a rainbow;

Phonons propagating through a crys-
talline solid;

Spreading of light pulses in fibre-optic
cables, due to dispersion, limits the max-

imum length of cable before signal recon-
ditioning is needed.



